
with Python 2

1.3

Copyright © 2021 Binary Logic SA

Loops
Sometimes in coding you need to repeat a set of commands multiple times. This
takes a lot of time and effort. Python provides different control structures to help
you avoid rewriting code commands.

Python supports two types of loops: the for loop and the while loop.

Lesson 3
Repetition
Sometimes in programming we need a part of the code to be repeated
several times. Almost all the programming languages provide a function
called a loop. Loops allow you to execute a single line of code or set of code
statements several times. The number of repetitions could be specified as a
certain number, or the repetitions could depend on a certain condition.

for loop
The for loop is used when you want to repeat a set of commands a specified
number of times. The number of repetitions is specified in range() parameters.

This specifies the
number of repet i t ions.The statements which are

repeated have to be indented.

Loops in Python

 for loop
for loop_varaible in range:
 statements

 while loop
while condition:
 statements

for loop_varaible in range():
 statements

II

Copyright © 2021 Binary Logic SA

Prints out the value of i
for i in range(10,5,-2):
 print(i)

Range() function
You use the range() function with the for loop to specify the number of
repetitions. The variable that counts the repetitions is called the counter.

In a range() function the counter starts counting from 0, increments by 1
and ends at the specified number. For example, in range(5)

You can specify the starting value by adding a parameter. For example,
range(2,5), means that the counter starts counting from 2 and ends at 4
(the value 5 is not included).

The default value of increment in range() is 1, but you can specify the
increment value by adding a third parameter in the range function. For example,
range(1,5,2), means the counter starts counting from 1, ends at 5 and it
increases by 2.

0
1
2
3
4

10
8
6

Prints out the value of i
for i in range(5):
 print(i)

Prints out the value of i
for i in range(2,5):
 print(i)

2
3
4

The step can also be a negative number. In this case the count is reversed.

Prints out the value of i
for i in range(1,5,2):
 print(i)

The third parameter in
range is called the step.

1
3

Prints out the value of i
for i in range(1,5,2):
 print(i)

III

1.3

Copyright © 2021 Binary Logic SA

Try out the following code and write down
the values that appear on the screen.

Try it out

for i in range(4,0,-1):
 print (i)

for i in range(0,10,2):
 print (i)

Students letter grades

In the previous lesson, we worked through an example calculating a students
letter grades. The program checked if the student passed the exams. Let’s see
how we can apply the for loop. In the previous example there was one student.
Let’s assume now that you have to check the grades of a whole class of 15
students. The new parts of the code that you have to add are the following.

for st in range (0,15):
	 print("Please enter a student's name: ")
	 name=input()
	 print("Please enter a grade: ")
	 g=int(input())
	 if g>50:
		 print(name,"passed the exams.")
		 if g<=70:
			 print(name,"got a C.")
		 elif g<=90:
			 print(name,"got a B.")
		 else:
			 print(name,"got an A.")
	 else:
		 print(name,"didn't pass the exams.")

To read each
student's name.

The for loop is used when you know the number of the repetitions from the
beginning. What happens when this number is not known and the repetition
depends on a condition? For such cases, Python offers the while loop.

Syntax inspector
Be careful with the
indentation!

1.3

IV

Copyright © 2021 Binary Logic SA

while loop
The while loop is used when the number of repetitions is not known in advance.
As long as the condition is True the loop iterates. After every repetition the
condition is checked. When the condition becomes False, the iteration stops and
program control passes to the line following the loop. If the condition is initially
False, the statements of the loop will not be executed at all.

Let's look at an example with the while loop. In this example, the user
enters a value for the variable a. The loop ends when the user enters 0 as
the value for the variable a.

a=int(input("Enter a value for a: "))
while a!=0:
	 print(a)
	 a=int(input("Enter a value for a: "))
print("End of the loop.")

while condition:
 statements

The statements which are
repeated have to be indented.

Enter a value for a: 5
5
Enter a value for a: 6
6
Enter a value for a: 10
10
Enter a value for a: 0
End of the loop.

V

1.3

Copyright © 2021 Binary Logic SA

We can use the while loop to check a user's input into a variable.

Students letter grades

In this example, the program will ask the user to enter the grade of a student. This
grade should be greater than or equal to 0 and less than or equal to 20. If the user
enters a value out of this range, the program will display an error message and
ask the user to enter a valid grade.

i=1
while i<6:
 i=i+1
 if i == 3:
 print("Hello!")
 print(i)

#Students grades must be greater than or equal to 0
#and lower than or equal to 20
grade=int(input("Enter a student's grade: "))
while grade<0 or grade >20:
	 print("Invalid grade, enter a grade between 1-20.")
	 grade=int (input("Enter a valid grade: "))
print ("Your grade is: ", grade)

Enter a student's grade: 67
Invalid grade, enter a valid grade between 1-20.
Enter a grade: 18
Your grade is: 18

Try out the following code and write down
what appears on the screen.

Try it out

1.3

VI

Copyright © 2021 Binary Logic SA

Break Statement
Sometimes you want to terminate a loop before the condition becomes False. In
such cases, you use a break statement. The break statement terminates the
loop containing it. The program continues to the statement after the body of the
loop. A break statement can also be used in the for loop.

Infinite loop
If the condition of the while loop never becomes False you will end up with an
infinite loop. An infinite loop is a loop which never ends.

When you use the while loop you should include a command, or a set of
commands that will change the condition from True to False.

In the previous example, the value of the variable i does not change, so the
program will be executed forever.

i=1
while i<6:
	 print(i)

while True:
	 word=input("Type a word: ")
	 if word=="stop":
		 print("You used the break statement.")
		 break
	 print("Type a different word: ")

Type a word: this
Type a different word:
Type a word: that
Type a different word:
Type a word: stop
You used the break statement.

Try it out

Try out the following code. What do you notice?

Go further!
There are usually many
different ways to perform
the same task.
One method is preferred
over another based on
several factors, the most
important of which are the
program’s running speed
and the required storage
space. The programmer
determines the best
method.

To stop the loop you must press Ctrl + C
in the Python shell window.

VII

1.3

Copyright © 2021 Binary Logic SA

1 	� How many times will the command print() be executed? Choose the correct answer:

Practice

2 	� Write a program which will display the numbers 100, 95, 90, ..., 0 on the screen.

The program will not work because the
syntax of the commands is incorrect.

No message will be displayed on the
screen because the condition is incorrect.

The message "positive number" is
displayed on the screen.

The program will not work because the
syntax of the commands is incorrect.

No message will be displayed on the
screen because the condition is incorrect.

The message "positive number" is
displayed on the screen.

The program will not work because the
syntax of the commands is incorrect.

No message will be displayed on the
screen because the condition is incorrect.

The message "positive number" is
displayed on the screen.

for i in range (0,5,3):
 print(i)

for i in range (10,1,-2):
 print(i)

i=5
while i>1:
 print(i)
 i=i-1

my code

VIII

1.3

binarylogic.net

with Python 2

ISBN: 978-960-698-467-9

Key features
> �Spiral presentation of Digital Literacy, Computer Science

and ICT concepts
> �Clear step-by-step walkthroughs of operating systems

and software applications
> �Comprehensive coverage of international curricula

and exams
> �Effective integration of 21st century skills:

collaboration, communication, creativity, critical
thinking, problem-solving and decision-making

> �Extensive computational thinking support with
supplementary material for Coding and Robotics
for a variety of programming tools and educational
robots

> �A wide range of online student resources provide
flexibility and differentiation

> �Digital Teacher’s Guides fully support novice and
experienced teachers with step-by-step lesson plans

Digital Teens is a graded Computing and ICT series that adopts
an innovative project-based approach. Students understand
computing concepts and develop their ICT skills through fun,
real world scenarios and engaging activities.

